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Abstract. In this paper Prigogine’s minimum entropy principle is generalized to
thermodynamic and microeconomic systems that include active subsystem (heat
engine or economic intermediary). New bounds on the limiting possibilities of an
open system with active subsystem are derived, including the bound on the produc-
tivity of the heat-driven separation. The economic analogies of Onsager’s reciprocity
conditions are derived.

1. Introduction

Thermodynamic and microeconomic systems are both macro-systems.
They include a large number of micro subsystems, which are not con-
trollable and not observable. Control and observation in such systems
is only feasible on the macro level. The state of macro-system is de-
scribed by macro variables that depend on the averaged behavior of
its components only. Macro-variables are divided into extensive and
intensive. The former include internal energy, entropy, mass in ther-
modynamics and stocks of resources and capital in economics. When
a system is subdivided its extensive variables change proportionally to
the volume. The intensive variables (pressure, temperature, chemical
potential in thermodynamics, resource’s and capital’s estimates in mi-
croeconomics) do not change if the system is subdivided. In equilibrium
macro system’s variables are linked via the equation of state.

Changes of extensive variables are linked to flows of mass, energy,
resources, capital, etc. These flows can be caused by external factors
(convective flows) or by interaction of macro-systems with each other
(in thermodynamics such flows are called diffusive). Flow rates depend
on the differences between the intensive variables of the interacting
systems. This exchange leads to changes of extensive variables. The
rate of their change is proportional to the exchange flows. It is useful
to single out three classes of macro-systems:
1. Systems with infinite capacity (reservoirs). The values of their inten-
sive variables are fixed and do not depend on the exchange flows.
2. Finite capacity systems. We assume that they always are in internal
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equilibrium. Their intensive variable change as a result of exchange
flows. For example, the temperature of the system with constant volume
changes if its internal energy changes, the price of a resource changes
when its stock changes, etc. If interacting subsystems of finite capac-
ity are insulated from the environment then the differences of their
intensive variables tend to zero and the system as a whole tends to its
equilibrium state.
3. System with intensive variables (all or some) that can be controlled
(within given range). We shall call such systems active. Working body
of the heat engine, whose parameters are controlled to achieve maxi-
mal performance, is an active system. An economic intermediary, who
buys and resells resource by offering one price for buying and another
for reselling, is an active system. Active systems play important role
in Finite-Time Thermodynamics (FTT), which investigates limiting
possibilities of non-equilibrium thermodynamic systems (Berry, 1999),
(Salamon, 2001),(Andresen, 1983), (Andresen, 1984), (Bejan, 1996).
Most of FTT problems are reduced to optimal control problems where
intensive variables of active systems are controls.

A macro-system is open, if it exchanges with its environment. If
environment includes reservoirs and some of the flows are convective
then its steady state can be stationary (system’s intensive variables are
time-constant), periodic, quasi-periodic or quasi-stochastic.

Near equilibrium the flows in a system depend linearly on the driv-
ing forces. Prigogine’s extremal principle states that steady state of
near equilibrium system is stationary and the values of its intensive
variables are distributed within its volume or between its finite capacity
subsystems is such a way that the entropy production in the system is
minimal (Prigogine, 1971).

We will consider open thermodynamic and microeconomic macro-
systems that include internally equilibrium subsystems of these three
types. We will obtain the conditions that determine the limiting pos-
sibilities of active systems here and the extremal principles that deter-
mine stable states of such systems.

2. Thermodynamic system that includes an active
subsystem

2.1. Problem formulation

We consider thermodynamic system that includes n finite-capacity sub-
systems (we shall call them subsystems) (i = 1, ..., n) in internally-
equilibrium and an active subsystem that transforms heat or chemical
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energy into work. We shall call this active subsystem a transformer.
System exchanges convective mass flows gk (k = 1, ..., r) with the

Figure 1. Open thermodynamic system with transformer.
Figure 0.

environment. The compositions and rates of some of these flows are
given. The flows of heat qk are also given. Mass and heat flows between
subsystems inside the system are denoted as (qij , gij) and between
subsystems and transformer as qia, gia. We assume that these flows
are linear on driving forces ∆ij

Gij = {qij , gij} = Lij∆ij,
Gia = {qia, gia} = Lia∆ia.

}
(1)

Lij and Lia are the matrices of kinetic coefficients. We consider the
flow that enters a subsystem (convective and diffusion) as positive and
the power N , produced by the transformer, as positive also. If N >
0, then we shall call the transformer direct, and if N < 0 then it
is inverse. Driving forces ∆ia depend on the state of the transformer
during contact with i-th subsystem. It can be controlled. The state of
the i-th subsystem is described by the vector of its intensive variables
yi. Here Ti = 1

yi0
,∆ij = (yi−yj), Tia = 1

yia0
, ∆ai = (ya−yi). We assume

that some of subsystems have given state (xi = x0
i , i = 1, ...,m ≤ n),

and the other are free.
The following problems can be formulated in relation to this system:

1. What are the values of free variables xi (i = m+1, ..., n) if the power
of the transformer N and the compositions and rates of convective flows
are fixed?
2. What is the maximal power that can be extracted the and what is the
minimal power that has to be spent N (the limiting power problem)?
3. What is the maximal-feasible rate of one of the flows gr (objec-
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tive flow) if the power N and the compositions of all or some of the
convective flows are fixed?

2.2. Thermodynamic balances

Let us write down thermodynamic balances for a steady state of the
system as a whole. Subscript k denotes convective flow k. ek, Vk, hk =
ek +pkVk, pk denote k-th convective flow’s molar energy, enthalpy, pres-
sure, and its internal energy as ek.
(a) Energy balance is

r∑
k=0

(gkhk + qk) − N = 0. (2)

(b) Mass balance is

r∑
k=0

gkxνk +
∑

l

ανlWl = 0, ν = 1, 2, . . . (3)

∑
ν

xνk = 1, k = 1, . . . , r. (4)

Here xνk is the molar fraction of the ν-th component in the k-th flow,
ανl is stoichiometric coefficient with which ν-th specie enters into equa-
tion for the l-th reaction, Wl is the rate of this reaction. To simplify
equation we assume that the flow of energy from the reaction

ql =
∑
ν

µνlανlWl, (5)

is included into convective heat flows qk.
Similarly we introduce flows of mass

gl = Wl

∑
ν

ανl, (6)

with the composition determined by the equality

xνl =
ανl∑

ν
ανl

. (7)

We include these flows into convective flows gk.
(c) Entropy balance is

r∑
k=0

(
gksk +

qk

Tk

)
+ σ = 0. (8)
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Here sk is the molar entropy of the k-th flow. gk > 0, if it enters and
gk < 0, if it leaves the system.

From (3), (4) it follows that
r∑

k=0
gk = 0, so we eliminate one of the flows

(objective flow) g0. We obtain

r∑
k=0

qk +
r∑

k=1

gk∆h0k − N = 0, (9)

r∑
k=0

qk

Tk
+

r∑
k=1

gk∆s0k + σ = 0. (10)

Here
∆h0k = hk − h0, ∆s0k = sk − s0. (11)

Elimination of q0 with the temperature T0 from the equation (9) and
its substitution into (10), yields

r∑
k=1

[
gk

(
∆s0k − ∆h0k

T0

)
+ qk

(
1
Tk

− 1
T0

)]
+ σ +

N

T0
= 0. (12)

We denote the efficiency of the reversible heat engine as

η0
C =

Tk − T0

Tk

The power of the transformer N can be then expressed from (12) as

N =
r∑

k=1

[qkη
0
C + gk(∆h0k − ∆s0kT0)] − T0σ = N0 − T0σ. (13)

The first term in the right-hand side of the equality is the reversible
power N0 in a system with infinitely large mass and heat transfer coef-
ficients (arbitrary large size of apparatus). It is completely determined
by the parameters of the system’s input and output convective flows.
The second term describes dissipative losses.
For mixtures, which are close to ideal gases or ideal solutions, the molar
enthalpies and entropies can be expressed in terms of their compositions

hk(Tk, pk, xk) =
∑
ν

xνkhk(Tk, pk), (14)

sk(Tk, pk, xk) =
∑
ν

xνk[sk(Tk, pk) − R ln xνk], k = 0, ..., r. (15)

From the equality (13) it follows that if transformer’s intensive variables
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are chosen in such a way that N0 is not changed then the maximum of
N is achieved when minimum of σ is achieved.

2.3. Entropy production and the state of subsystems

For Onsanger’s linear kinetic (1) the entropy production in the system
takes the following form

σ =
n∑

i=1




∆T
iaLia∆ia +

1
2

n∑
j = 1
j �= i

∆T
ijLij∆ij




. (16)

The first term is the entropy production (scalar product of fluxes on
driving forces) due to heat and mass exchange between the i-th sub-
system and transformer. The second term is the entropy production
due to heat exchange between i-th and j-th subsystems. Multiplier 1

2
appears because the term for each flow enters into equality (16) twice.
Matrices Lij and Lia are positive definite and symmetric.
First we assume that convective flows do not enter into subsystems with
non-fixed state yi(i = m +1, ..., n). The following analog of Prigogine’s
principle then holds for an open system that includes a transformer
(active subsystem)
Statement 1: If intensive variables of the transformer yia(i = 1, ..., n)
are fixed then the free intensive variables of subsystems yi of an open
system take such values that entropy production in the system is mini-
mal and the power N obeys the equation

N = N0 − σmin(N)T0. (17)

The proof of this statement follows from the fact that stationarity
conditions of σ with respect to the components of the state vector
yi of the i-th subsystem coincide with the condition of its minimum,
because σ is a convex function.
Indeed, change of yi effects all flows that enter/ leave the i-th sub-
system. Note that the derivatives ∂∆ij

∂yi
and ∂∆ia

∂yi
have opposite signs

and their absolute values are equal 1. Since matrices Lij and Lia are
symmetric the stationarity conditions lead to the equations

n∑
j=1,j �=i

gijν = giaν , i = m + 1, ..., n, ν = 1, 2, ... (18)
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where gijν = gijxjν, giaν = giaxiν are the diffusion flows of the ν-th
component (∑

ν

gijν = gij ,
∑
ν

giaν = gia

)
,

n∑
j=1,j �=i

(qij + gijhij) = qia + giahi

i = 1, ..., n.
(19)

These equations coincide with equations of mass and energy balances
for the i-th subsystem.
Thus the intensive variables of the subsystems of an open system with
a transformer take such values that dissipation in it is minimal. If some
of the intensive variables yi are fixed then the free variables minimize
σ subject to these constraints.

2.4. Limiting power problem

If the state of some of the subsystems and the parameters of the con-
vective flows are fixed then the power N , obtain from the system or
used to maintain its state is bounded. For N > 0 this bound is the
maximal power of heat engine (Novikov, 1957), and for N < 0 it is the
minimal losses in the transformer ( Tsirlin , 2003)).
Assume that convective flows qka and gka are equal zero. Then the
thermodynamic balances take the following form:
(a) Energy balance is

N =
n∑

i=1

(
qia +

∑
ν

giaνhiν

)
. (20)

(b) Mass balance is
n∑

i=1

giaν = 0, ν = 1, 2, ... (21)

(c) Entropy balance is

n∑
i=1

[
giasi +

1
Tia

(
qia +

∑
ν

giaνhiν

)]
= 0. (22)

The problem of limiting power is now reduced to such choice of trans-
former’s variables yia during its contact with the i-th subsystem for
which N is maximal subject to conditions (21), (22), and to the mass,
energy and entropy balances for each of the i-th subsystems. This for-
mulation of the problem is very general. We will consider two particular
cases of this problem.
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2.4.1. Heat-mechanical system
Direct transformer. Here there are no mass flows and the problem
can be rewritten as follows (qia ∼ qi)

N =
n∑

i=1

qi(Ti, Tia) → max
Tia,Ti

(23)

subject to entropy and energy balances

n∑
i=1

qi(Ti, Tia)
Tia

= 0, (24)

n∑
j=1

qij(Ti, Tj) +
r∑

k=0

qik = qia, i = 1, ..., n. (25)

The conditions of optimality for the problem (23)–(25), follows from
the conditions of stationarity of its Lagrange function

L =
n∑

i=1


qi

(
1 +

Λ
Tia

− λi

)
+ λi


 n∑

j=1

qij +
r∑

k=1

qik




 (26)

on Tia and Ti

∂L

∂Tia
= 0 ⇒ ∂qi

∂Tia

(
1 +

Λ
Tia

− λi

)
= Λ

qi(Ti, Tia)
T 2

ia

, i = 1, ..., n, (27)

∂L

∂Ti
= 0 ⇒ ∂qi

∂Ti

(
1 +

Λ
Tia

− λi

)
+ λi

m∑
j=1

∂qji

∂Ti
= 0, i = m + 1, ..., n.

(28)
Equations (27), (28) allows us to find n temperatures Tia of the working
body, (n − m) temperatures Ti of subsystems and (n + 1) Lagrange
multiplier.

The most common form of heat exchange law is Newton’s linear
form

qji = αji(Tj − Ti).

Here qi = αi(Ti −Tia), qji = αji(Tj −Ti), and equations (27), (28) take
the form

n∑
i=1

αi
Ti

Tia
= 1, αi =

αi
n∑

ν=1
αν

, (29)

Tia = Ti − 1
αi


n+1∑

j=0

αji(Tj − Ti) +
∑
k

qik


 , i = 0, ..., n + 1, (30)
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T 2
ia(1 − λi) = ΛTi, i = 1, ..., n, (31)

αi

(
1 +

Λ
Tia

− λi

)
= λi

n∑
j=1

αji, i = 1, ..., n. (32)

We denote
αi =

αi

m+1∑
j=0

αji

.

After eliminating λi from (31) and (32) we get

(1 + αi)
Ti

T 2
ia

+
αi

Tia
=

1
Λ

= const, i = 1, ..., n. (33)

These equations jointly with balances (29), (30) determine the solution.
Let us show that if n = 2 and subsystems’ temperatures are fixed

T1 = T+, T2 = T− then from these conditions follow the known results
(Novikov, 1957), ( Curzon , 1975) about the limiting power of the heat
engine. Indeed, here the conditions (32) are missing, λi = 0 and from
(31) it follows that

T ∗
1a =

√
ΛT+, T ∗

2a =
√

ΛT−,

and from equations (29)–(32) obtain the efficiency of the heat engine
with maximal power as

η = 1 − T0a

T1a
= 1 −

√
T−
T+

,

and the maximal power as

Nmax =
α1α2

α1 + α2
(
√

T+ −√T−)2. (34)

2.4.2. Inverse transformer. Optimal thermostating.
The maximal feasible power can be positive or negative. The sign de-
pends on the given temperatures of the external flows qk and given
fixed temperatures of the subsystems Ti(i = 1, ...,m). If this power is
negative then we obtain the problem of limiting possibilities of heat
pump in the thermo-stating system. That is, the problem of main-
taining given temperatures in some of the subsystems and of optimal
choice of temperatures in the rest of passive subsystems to minimize
power used. For Newton laws of heat transfer we obtain the conditions
(29)–(31). The conditions (32) and (33) hold for subsystems with free
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temperatures Ti (i = m+1, ..., n). In the optimal thermo-stating prob-
lem ( Tsirlin , 2003) these temperatures are the temperatures of the
passive subsystems.

2.5. Separation system

Separation systems commonly used mechanical (membrane systems,
Centrifuging, etc) or heat energy (distillation, drying, etc). We consider
them separately.

2.5.1. Binary separation using mechanical energy

Figure 2. Mechanical separation of binary mixture.
Figure 0.

Consider system for binary separation shown in Figure 2. The input
points for convective flows are fixed and the compositions and rates of
these flows are also fixed. Here the mass balance holds

g1 = g2 + g3, (35)

g1x1ν = g2x2ν + g3x3ν , ν = 1, 2, ..., (36)

The composition of each of three subsystems xi(i = 1, 2, 3) are also
fixed and coincide with the compositions of the convective flows. The
temperatures and pressures of these flows are the same and enthalpy
increments of the convective flows are equal zero. The condition (13)
can be rewritten as

N = −g0T0

1∑
k=1

εk∆s0k − T0σ → max . (37)
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Here εk =
∣∣∣ gk
g0

∣∣∣ is the fraction removed into the first and the second

flows (ε1 + ε2 = 1). We denote the power used as N = −N and obtain

N = g0RT0

[
2∑

k=1

εk

∑
ν

xkν ln xkν −
∑
ν

x0ν ln x0ν

]
+T0σ = N0+T0σ → min .

(38)
The first term in the right hand side is the reversible power for sepa-
ration.

Each of the convective flows gi contains three components: qi, gi1 =
g1xi1, gi2 = g1xi2 (i = 0, 1, 2). The vector of driving force of the i-th
flow ∆i has components

∆iq =
(

1
Tia

− 1
T0

)
, ∆i1 =

(
µi1a

Tia
− µi1

T0

)
, ∆i2 =

(
µi2a

Tia
− µi2

T0

)
.

Flows depend linearly on driving forces

gi = Ai∆i, i = 0, 1, 2, (39)

here the matrix Ai is positive definite and symmetric. Its inverse Bi =
A−1

i is also positive definite and symmetric.
Entropy production can be rewritten using (39) in the following form

σ =
2∑

i=0

σi =
2∑

i=0

gT
i A−1

i gi. (40)

If it is feasible to control driving forces in the system in such a way
that the rates and compositions of flows have required values then the
power used by the irreversible separation system is

N
∗ = N

0 + T0

2∑
i=0

gT
i A−1

i gi. (41)

In particularly for diagonal matrices Ai

N = N
0 + T0

2∑
i=0

(
q2
i

αiq
+

g2
i1

αi1
+

g2
i2

αi2

)
. (42)

If the constrains imposed on the system are softer, for example,
if only the flow g1 and its composition x11(x12 = 1 − x11) and the
composition of the input flow x01(x02 = 1 − x01) are given then the
problem is reduced to the search of minimum of σ on q0, q1, q2, g0, g2, g21

subject to constraints

2∑
i=0

qi =
2∑

i=0

gi =
2∑

i=0

gi1 = 0, 0 ≤ g21 ≤ g2. (43)

princ1.tex; 5/03/2004; 11:09; p.11



12

Quadratic form (40) is convex and the set of this problems feasible
solutions is also convex. Therefore the problem (40), (43) has a unique
solution which corresponds to the power that is always lower than N

∗,
found from (41).

Note that productivity of the system (rate of objective flow) can be
made arbitrary high if the power used N is made sufficiently high.

2.6. Thermal separation

Here N = 0 and the transformer uses heat flows to obtain the work of
separation. Consider the system shown in Figure 3

Figure 3. Thermal separation system.
Figure 0.

Assume that the input mixture is binary and the temperatures of
the flows gi(i = 0, 1, 2) and their pressures are the same. We denote
the temperatures of the subsystems as T+ and T− < T+. We assume
that enthalpy increments of the flows g1 and g2 are zero, N = 0, and
the formula (13) takes the form

q+η = T−

(
2∑

k=1

gk∆s0k + σ

)
= 0, η = 1 − T−

T+
. (44)

For Newton law of heat transfer

q+ = α+(T+ − T1), q− = α−(T− − T2), (45)
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and for the substances that are close to ideal solutions the reversible
power of separation is

Np(g0) = T0

2∑
k=1

gk∆s0k = RT0g0

(
2∑

k=1
|εk|

2∑
ν=1

xkν ln xkν−

−
2∑

ν=1
x0ν ln x0ν

)
, εk = |gk|

g0
.

(46)

The entropy production due to heat flows is

σq = σq+ + σq− =
α+(T+ − T1)2

T+T1
+

α−(T− − T2)2

T−T2
. (47)

The entropy production due to mass flows is (40)

σg =
2∑

k=0

gk
T A−1

k gk. (48)

After taking into account (45)–(48) the equation (44) takes the form

α+(T+ − T1)η = (Np + T−σg) + T−σq. (49)

Note that for the fixed εk and fixed compositions of flows the re-
versible power of separation Np increases linearly when productivity g0

increases, and that σg increases as g2
0 . Therefore the maximal produc-

tivity of thermal separation system g0
max is finite and is given by the

solution of the equation

Np(g0) + T−σg(g0) = max
T1,T2

{q+(T+, T1)η − σq(T+, T−, T1, T2)} . (50)

The expression in the right hand side of the equality (16) is the maximal
power of irreversible heat engine. Its maximum is sought subject to
transformer’s balance on the entropies of heat flows

α+(T+ − T1)
T1

+ α−
(T− − T2)

T2
= 0. (51)

The solution of this problem for Newton laws of heat transfer was
obtained in (Novikov, 1957), ( Curzon , 1975) and shown above (34).
Substitution of Nmax into the right hand side of equality (50) allows
us to obtain the limiting productivity of thermodynamic separation
system that has the structure shown in Figure 3.

Let us emphasis that unlike mechanical systems the productivity of
the thermal systems is bounded. The increase of the rates of heat flows
above some threshold reduces system’s.
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3. Open microeconomic system

The analogy between thermodynamic and microeconomic systems has
been studied extensively. The works Samuelson ( Samuelson , 1972),
Lichnerowicz ( Lichnerowicz, 2003), Rozonoer (Rozonoer, 1971), (Rozo-
noer, 1973) and Martinash ( Martinas, 2003) should be especially men-
tioned. Most of that research considered analogy between equilibrium
systems. In this paper we consider this analogy for non-equilibrium
systems.

3.1. Stationary state, reciprocity conditions and minimal

dissipation principle

Each subsystem on an open economic system - an economic agent -
is described by its extensive variables - the stock of resources N and
capital N0; by its wealth function S(N), and by its intensive variables
- resources’ and capital estimates pi and p0 that obey the following
equations

p0 =
∂S

∂N0
, pi =

∂S

∂Ni

/ ∂S

∂N0
=

1
p0

∂S

∂Ni
, i = 1, 2, ... (52)

Resource estimate pi is the equilibrium price for buying and selling. If
the price ci is higher than the equilibrium price then economic agent
sells and if it is lower then it buys resource. Because agent’s wealth
function is uniform function of first degree and strictly convex, the
resource’s estimate decreases when its stock increases.

If the system is near equilibrium then the flow depend on the driving
forces linearly. The driving force for the i–th resource is the difference
between its price and its estimate ∆i = pi − ci. We assume that it is
positive if the flow is directed to the economic agent, then

gi =
n∑

ν=1

aνi∆ν =
n∑

ν=1

aνi(pν − cν), i = 1, ..., n (53)

We shall call the matrix A with elements aiν the matrix of economic
agent’s kinetic coefficient. This matrix determines exchange kinetic
between economic agent and its environment.

The flow of resource exchange causes the reciprocal flow of capital
in the opposite direction such that

dN0

dt
= −

n∑
i=1

cigi. (54)
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Economic agent’s wealth function here changes

dS
dt = ∂S

∂N0

dN0
dt +

n∑
i=1

∂S
∂Ni

gi = −p0

n∑
i=1

cigi + p0

n∑
i=1

pigi =

p0

n∑
i=1

(pi − ci)gi = p0∆T A∆.
(55)

Here ∆ is the driving force vector.
Because the estimate of the capital p0 > 0, and because the exchange

is always done voluntarily, the wealth function does not decrees. There-
fore the matrix A is positive definite. If the driving forces are expressed
in terms of ∆ from (53) then (55) takes the form

dS

dt
= p0g

T Bg, (56)

here g is column-vector, B = A−1, and the elements biν of this matrix
are equal to (up to the constant)

biν =
∂2S

∂Ni∂Nν
, i, ν = 1, ..., n. (57)

Thus, the matrix B is positive definite and symmetric, and its inverse
matrix of kinetic coefficients A is also positive definite and symmetric.
Thus, the following analog of the reciprocity conditions hold: the effect
of the difference between the price and estimate of the ν-th resources
on the flow of i-th resource is the same as the effect of the difference
between the price and estimate of the i-th resources on the flow of ν-th
resource.

Consider the system that includes r subsystems with fixed resource
estimates (economic reservoirs) and k − r subsystems that exchange
resources and capital with each other (Figure 4). Resource estimates
for reservoirs pi (i = 1, . . . , r) are constant. These estimates Ni and
N0i depend on the stocks of resource and capital for subsystems with
i > r. We assume for simplicity that capital estimates are the same
for all subsystems and equal to 1. Assume that the flow of resource ni

to/from economic agent, who has estimate pi(Ni, N0i), is determined
by the flow of capital qi = −nici. Here ci is the price of resource that
is higher than pi when economic agent sells resource (ni < 0), and is
lower than pi when it buys it, ni > 0. If economic agent exchanges with
j-th reservoir, then ci = pj, and

nij = nij(pj , pi), qij = −pjnij, j = 1, . . . , r; i = r + 1, . . . , k.
(58)

Following ( Martinas, 2003), we define the price ciν such that

ñiν(pi, ciν) = −ñνi(pν , ciν), (59)
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Figure 4. Structure of an open microeconomic system with two
economic reservoirs.
Figure 0.

where (i; ν) ≥ r + 1. Conditions (59) allows us to express ciν in terms
of pi, pν and obtain

niν(pi, pν) = −nνi(pν , pi). (60)

For example, assume that

ñiν = ãiν(pi − ciν), ñνi = ãνi(pν − ciν).

From the condition (59) we obtain ciν and flows in the equation (60)
become:

ciν =
ãiνpi + ãνipν

ãiν + ãνi
= γiνpi + γνipν , γiν + γνi = 1, (61)

niν(pi, pν) =
ãνiãiν

ãiν + ãνi
(pi − pν) = aiν(pi − pν),

nνi(pν , pi) = −niν(pi, pν) = aiν(pν − pi).

(62)

The capital fluxes are

qiν(pi, pν) = −ciν(pi, pν)niν(pi, pν) = −qνi(pν , pi). (63)

For fluxes (62) we obtain

qiν(pi, pν) = −(ãiνpi + ãνipν)ãνiãiν

(ãiν + ãνi)2
(pi − pν).

If ãiν = ãνi = aiν then

qiν(pi, pν) = −aiν(p2
i − p2

ν)
4

.
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Assume that the flux is a vector and the condition (60) holds for l-th
component of this flux. We denote:
(a) Vector of differences between estimates of i-th and ν-th economic
agents (b)

∆piν = (∆piν1, ...,∆piνl, ...) = pi − pν . (64)

(b) Matrix Aiν of the coefficients that link flux-vector between economic
agents and their estimates’ difference. The elements of this matrix aiνµl,
where µ and l are subscripts that denote the type of resource. Matrix
Aiν is positive definite (Aiν = 0) and symmetric.

The flow of l-th resource between i-th and ν-th economic agents is

niνl =
∑
µ

aiνµl(∆piνµ), (65)

and vector-flux is
niν = Aiν∆piν. (66)

We denote the price vector during exchange between economic agents
as ciν = (ciν1, ..., ciνl, ...). From the condition similar to (59), it follows
that the price is equal to the subsystems’ estimates averaged with the
weights γiνl and γνil

ciνl(pil, pνl) =
˜aiνlpil + ˜aνilplν

˜aiνl + ˜aνil
= γiνlpil + γνilpνl, (67)

The flux of capital is
qiν = −ciνAiν∆pT

iν . (68)

In a steady state the stocks of resources and capital do not change

k∑
ν=1

niν =
k∑

ν=1

Aiν∆pT
iν = 0, i = r + 1, ..., k, (69)

k∑
ν=1

ciν(pi, pν)Aiν∆pT
iν = 0, i = r + 1, ..., k. (70)

Capital dissipation is

σ =
1
2

∑
i,ν

∆piνAiν∆pT
iν , (71)

the multiplier 1
2 is due to each term appearing twice (Aνi = Aiν).

Since matrix A is symmetric the conditions of minimum of capital
dissipation with respect to resource’s estimates yields the conditions
69), (70). Thus, in an open microeconomic system that consists of
subsystems in internal equilibrium with flows that depend linearly on
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the difference of resources’ estimates the resources are distributed in
such a way that capital dissipation attains minimum with respect to
free variables. This statement is an analogy of the extremal principle
of Prigogine for economic systems.

3.2. Limiting possibilities of economic intermediary

Assume that the system (Figure 5) includes an intermediary that can
buy resource from one economic agent and resell it to another. This
allows it to extract capital.

Figure 5. An open system that includes intermediary, markets and
passive subsystem.
Figure 0.

Intermediary offers the price vi during an exchange with the i-th
subsystem. The flow of resource here is mi(pi, vi). In a stationary state
the problem of extraction of maximal profit takes the following form

m = −
k∑

i=1

mi(pi, vi)vi → max
v,p

(72)

subject to constraints
k∑

i=1

mi(pi, vi) = 0, (73)

k∑
j=1

nji(pj, pi) = mi(pi, vi), i = r + 1, . . . , k. (74)

Minus in (72) is the result of the assumption that the flow of resource
directed from economic agent to the intermediary is positive. This flow
is accompanied by reduction of capital. The condition (73) is interme-
diary’s resources’ balance and the conditions (74) are resource balances
for each of the k − r economic agents.
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The Lagrange function of the problem (72), (74) is :

L =
k∑

i=1


mi(pi, vi)(Λ − vi + λi) − λi

k∑
j=1

nji(pj , pi)


 . (75)

Here λi = 0 for i ≤ r.

The conditions of optimality have the form

∂L

∂vi
= 0 ⇒ ∂mi

∂vi
(Λ − vi − λi) = mi(pi, vi), i = 1, . . . , k, (76)

∂L

∂pi
= 0 ⇒ ∂mi

∂pi
(Λ − vi − λi) = λi

m∑
j=1

∂nji

∂pi
, i = r + 1, . . . , k. (77)

The conditions (73), (74), (76), (77) determine 2(k−) unknowns pi and
λi, and the values of Λ and k optimal prices vi.

In particular, if nji = aji(pi − pj), mi = ai(vi − pi) then these
conditions can be rewritten as follows

m∑
i=1

ai(vi − pi) = 0, (78)

k∑
j=1

aji(pi − pj) = ai(vi − pi), i = r + 1, . . . , k, (79)

2vi = λi + Λ + pi, i = 1, . . . , k, (80)

−ai(Λ − vi + λi) = λi

k∑
j=1

aji, i = r + 2, . . . , k. (81)

The problem of maximal rate of extraction of capital is a direct analog
of the problem of maximal power of heat engine in an open thermody-
namic system.

4. Conclusion

Economic systems differ from thermodynamic systems in many respects
including voluntary, discretional nature of exchange, production in ad-
dition to exchange, competition in various forms, etc. However, thermo-
dynamic and economic systems are both macro-systems which explain
many analogies between them, including analogy of irreversibility of
processes in them.
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Steady state of open thermodynamic and microeconomic systems
that include internally equilibrium subsystems with fixed intensive vari-
ables (reservoirs) and subsystems whose intensive variables are free (are
determined by the exchange flows) were considered. It was shown that
for linear dependence of flows on driving forces it corresponds to the
conditional minimum of the entropy production (in thermodynamics)
or to the conditional minimum of capital dissipation (in microeco-
nomics). The conditions that determine the limiting possibilities of an
active subsystem (transformer in thermodynamics and intermediary in
microeconomics) were obtained.
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