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Abstract. 
In this paper the problem of energy-optimal heating/cooling a building is considered. Here the given subset of 
rooms in a building must have given temperatures. It is proven, that if heat is supplied from a single heat 
source then it is optimal to supply it only to the rooms with given temperatures. If individual heat sources 
(separate air-conditioners/heat pumps in each room) are used then it is more efficient to supply /remove heat 
to the target rooms and also to intermediate rooms with non-fixed temperatures.  

Introduction  
 
It is known that if an open thermodynamic system is in steady state then such a distribution of thermodynamic 
potentials is established in it that entropy production is minimal. One of the problems considered by 
thermodynamics of open systems is estimation of the amount of energy required to establish given 
distribution of potentials that differs from the equilibrium one. In this paper we consider one particular case of 
this problem, which is relatively simple but has important applications. Here a given discrete distribution of 
temperatures has to be established. This problem arises when minimal energy required for thermostatting of a 
building needs to be estimated. Such estimate and the corresponding optimal distribution of the energy fluxes 
in the building allow us to calculate potential energy savings by establishing fixed temperatures only in a part 
of the building.        
 
This paper uses the methods of Finite-Time thermodynamics, developed during last two decades, see for 
example, [1]-[3]. 
 
Consider a building and assume that it is necessary to establish fixed temperatures in some of its rooms only 
(we shall call them target rooms). The temperatures in other (intermediate or passive) rooms are allowed to 
set freely. Which rooms are target rooms and their temperatures may vary, depending on the season and on 
the time of the day.  We consider two versions of the problem of minimal energy consumption for 
heating/cooling of such a building.   
 
Problem (A).   A single source heating/cooling system is used for the whole building (one air-
conditioner/heat pump or a direct supply of heat via electric, gas, water or air heating). Energy consumption 
here is unique function of the sum of heat fluxes to all rooms. Therefore minimization of the energy 
consumption is equivalent to minimization of this combined heat flux.  
 
Problem (B).   Each room has separate air-conditioner/ heat pump. That is, each room has individual heat 
source with separate temperature.  
 
Unlike the problem A, minimization of energy consumption (exergy losses) in Problem B is not equivalent to 
minimization of combined heat fluxes.   
 
We will show that for any law of heat transfer the optimal heating/cooling in Problem (A) is achieved by 
transferring heat to target rooms only.  
 



We will also show that the most energy efficient way to thermo state the building in Problem B is by 
supplying/removing some of the heat into intermediate rooms also.  
 
Similar problem arises in cryogenic, where the objective is to establish a pre-set low temperature in a chamber 
using heat pumps. It is known, that for some laws of heat transfer, it is more efficient in this problem to use 
so-called active insulation. It includes an “onion ring” of chambers embedding each other, where some part of 
heat is removed from the central thermal stated chamber and some parts from each intermediate chamber. The 
temperatures in intermediate chambers are set lower than the temperature of the environment but higher than 
the temperature of the thermal stated chamber. The active insulation problem was first considered in [4], [5] 
and then generalized in [6]. In [6] it was shown for which laws of heat transfer active insulation leads to 
energy savings.  
 
Problem formulation 
 

 
Figure 1. General structure of a building. 
 
 
 
Consider the building whose structure is shown in Figure 1, where the following notations are used: 
Ti – is the temperature of the i-th room (i=0,1,…,n) [ K ]; 

),( jiij TTα -is the heat transfer coefficient between i-th and j-th room, which can depend on the temperatures 

in these rooms  ( 0≥= ijji αα ), [ KW / ]; 

))(,( ijjiijij TTTTq −=α - is the heat flux from the j-th room to the i-th room, [W]; 

))(,( 0000 iiii TTTTq −=α - is the heat flux from the i-th room to the environment with the temperature T0, 
[W]; 

iq~  is the heat flux, supplied (removed) to/from i-th room, [W]. We assume that the sign of this flux is 
positive if the heat is supplied to the i-th room. 

iP  is the power that runs air-conditioner/heat pump in the i-th room. 

Problem formulation: Assume that the temperatures of m rooms T1,…Tm )( nm < and the temperature of 

the environment T0  are fixed. It is required to find such heat fluxes iq~  (i=1,…,n) that the total amount of 
heat supplied (for the problem A) or the combined power used to drive heat pumps and refrigerators (for the 
problem B) is minimal.  
 



Thermo stating using a single heat source (optimal distribution of energy)  
 
Let us write down the formally the problem of minimization of total heat supplied. This problem arises when 
heating system is designed for a building where the set of rooms where the temperatures are required to be 
fixed as well as the temperature of the environment T0 changes during different seasons and/or during 
different time of the day.  
 
The optimality criterion here is  
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constraints on the heat fluxes  
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and constraints imposed on the temperatures of the thermal stated rooms  
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This problem can be simplified,  by eliminating the condition (2) and rewriting the objective function as 
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The unknown variables in this problem are the temperatures of the intermediate room Ti (i=m+1,…,n). 
 
Let us write down the Lagrange function of the problem (5), (6)   
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Its optimality conditions follow from the Kuhn - Tucker theorem 
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From the Slater's complementary slackness conditions (9) it follows that if 0=iλ , then 
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iT of any of the rooms leads to the decrease of the heat flow, which enters it. Therefore for all intermediate 

rooms ∑
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0),( , i=m+1,…n. From the conditions (8) it follows that for these rooms 

0)1( =+ iλ , that is, 1−=iλ  (i=m+1,…n).  From the Slater's complementary slackness conditions (9) it 
follows that on the optimal solution   
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In another words, if the solution is optimal then all the heat flows that enter intermediate rooms must be equal 
zero. 
The optimal values of heat fluxes iq~  ( mi ,,1…= ) are uniquely determined by the heat balance equations 
(2) which take the following form 
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The conditions (10)-(12) allow us to find the fluxes iq~  ( mi ,,1…= ) and (n-m) temperatures in intermediate 
rooms.  
For the Newton (linear) law of heat transfer, the heat transfer coefficients ijα are constant and the problem 
(4)-(6) becomes the linear programming problem, and the conditions (10)-(11) turn out to be the set of (n-m) 
linear equations. The solution of this set of equations completely determines the optimal values of fluxes  iq~ . 
If one of the fluxes iq~  turns out to be negative then no optimal solution exists for the original heating 
problem (A). The optimal solution with the given set of temperatures in the target rooms can be guaranteed 
only if an air-conditioner/heat pump is used for heating.  
 

Example. 
 
Consider the building, shown in Figure 1. The corresponding computational schematic structure is shown in 
Figure 2. The temperature of the environment T0 and the room temperatures T1 and T2 are given and equal to, 
200C, 180C and 200C , correspondingly.  Heat transfer coefficients between the rooms and the environment 
are shown in Table 1. It is required to determine the amount of supplied heat 1

~q  and 2
~q and  the temperatures 

in the non- thermo-stated rooms T3, T4, T5, T6.   
 
 i,j 0 1 2 3 4 5 6 
0  16.8 84 16.8 0 33.6 50.4 
1 16.8  0 0 33.6 33.6 33.6 
2 84 0  33.6 33.6 0 33.6 
3 16.8 0 33.6  33.6 33.6 0 
4 0 33.6 33.6 33.6  0 33.6 
5 33.6 33.6 0 33.6 0  0 
6 50.4 33.6 33.6 0 33.6 0  
 
Table 1. The heat transfer coefficients, ijα [W/K]. 
 
The equations (10)- (12) yields the set of heat balance equations  
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Substitution of the of the given temperatures T0 , T1 and T2  yields the following results  
1832~

1 =q W; 4579~
2 =q W; CT 0

3 8.6= ; CT 0
4 3.12= ; CT 0

5 6.1= ; CT 0
5 5.4= . 

 

 
Figure 2. The fragment of the building plan (a). Computational schema of heat transfer in this fragment (b).  

Minimization of exergy losses for heating using individual rooms’ pump/air 
conditioners/ heat pumps  
 
The problem of minimization of the combined energy used by air-conditioners/heat pumps takes the 
following form  

min
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subject to conditions (2), (4). We denote the efficiencies of heat pumps as 
i
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depend on the design of the pump (the heat transfer coefficients in the heater and refrigerator 0k and ik ), the 

form of the cycle, the temperatures on the hot and cot side of the cycle 0T and iT  and on the power used iP . 

The reversible estimate of the heat efficiency of the heat engine does not depend on iP  
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Here and later we measure temperatures in Kelvin degree.  
 
The more accurate lower estimate for the efficiency of a heat pump and refrigerator cycle, which takes into 
account the irreversibility of heat transfer was obtained in [1], [2]. For the Newton law of heat transfer with 
the heat transfer coefficient 0k for the heat removal from the environment and ik for the heat supply into the 
room this estimate for a heat pump has the following form [2]  
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= is the equivalent heat transfer coefficient. 

 
For refrigerator 0TTi <  and its efficiency ir

�
 is expressed in terms of ir defined in (16) as 

1),,( 0 −= iiii PTTrr� . The equality (17) follows from the known relation between the efficiency of 
refrigerating cycle and the efficiency of heat pump [2]. In particular, for a reversible cycle  



10

0

0 −=
−

= i
i

i
i r

TT
T

r� . 

Let us rewrite the condition (2) in the following form  
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In the problem (13), (16), (4) the unknown variables are powers 0≥iP  ( ni ,,1…= ) and the temperatures 

of the intermediate rooms iT ( nmi ,,1…+= ). 
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equations, which follow from them, should be replaced with refrigerators’ efficiencies   
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Note that the temperatures 0T and iT in equation (17) changed places.  
 
The Lagrange function of the problem (13), (14), (4)  has the form  
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These conditions jointly with the conditions (16) and expressions (15),(17)  determine the unknown variables. 
 
If a reversible efficiency estimate is used then the problem is simplified and the system (16), (18), (19) leads 
to the following equations  
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Thus the temperatures of the intermediate rooms are  
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This system of equations allows us to find all the temperatures, because all the temperatures for mi ≤ are 
fixed (see (12)). After finding the temperatures the powers can be found from the conditions (20) for all   

ni ,,1…= . 



Example 2. 
 
Consider the building shown in Figure 3. The temperatures are KT 2530 = and KT 2931 = and the heat 

transfer coefficients are 
K
WKKK 3000210 === and 

K
W08.942010 ==αα and 

K
W1802112 ==αα . It is required to find the temperature 2T  in the second room and the powers of  heat 

pumps/ refrigerators. 
 
 
 
 

 
 
 
 
Figure 3. The plan and the computational structure of the building used in Example 2.  
 
 
The problem of minimal energy used to drive heat pumps has the following form here  
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Now power can be expressed in term of 2T as 
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Thus, the optimality criterion I depends only on 2T only and attends its minimum at KT 2822 = .   

Substitution of the obtained temperature 2T into the expressions for the powers yields 

WP 36.9101 = and WP 32.792 = . 



Conclusion 
 
In this paper we demonstrated that if the building is heated from a single-temperature heat source (single air-
conditioner/heat pump, electrical heating, heating using hot water/air, natural gas heating) then for any law of 
heat transfer it is most energy efficient to supply heat only into the set of rooms where the temperatures are 
fixed. The temperatures in the intermediate rooms are allowed to set up freely and are determined by the 
conditions of heat transfer. 
 
If separate air-conditions/heat pumps are used for heating/cooling then it is most efficient to use some power 
to establish some optimal temperatures in the intermediate non-target set of rooms.  
 
The obtained formulas allow us to find this temperatures and to estimated the lower bound on the total energy 
consumption for thermal stating of the building. 
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