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Optimal thermostatting
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Abstract.

In this paper the problem of energy-optimal heating/cooling a building is considered. Here the given subset of
rooms in a building must have given temperatures. It is proven, that if heat is supplied from a single heat
source then it is optimal to supply it only to the rooms with given temperatures. If individual heat sources
(separate air-conditioners/heat pumps in each room) are used then it is more efficient to supply /remove heat
to the target rooms and also to intermediate rooms with non-fixed temperatures.

Introduction

It is known that if an open thermodynamic system is in steady state then such a distribution of thermodynamic
potentials is established in it that entropy production is minimal. One of the problems considered by
thermodynamics of open systems is estimation of the amount of energy required to establish given
distribution of potentials that differs from the equilibrium one. In this paper we consider one particular case of
this problem, which is relatively simple but has important applications. Here a given discrete distribution of
temperatures has to be established. This problem arises when minimal energy required for thermostatting of a
building needs to be estimated. Such estimate and the corresponding optimal distribution of the energy fluxes
in the building allow us to calculate potential energy savings by establishing fixed temperatures only in a part
of the building.

This paper uses the methods of Finite-Time thermodynamics, developed during last two decades, see for
example, [1]-[3].

Consider a building and assume that it is necessary to establish fixed temperatures in some of its rooms only
(we shall call them target rooms). The temperatures in other (intermediate or passive) rooms are allowed to
set freely. Which rooms are target rooms and their temperatures may vary, depending on the season and on
the time of the day. We consider two versions of the problem of minimal energy consumption for
heating/cooling of such a building.

Problem (A). A single source heating/cooling system is used for the whole building (one air-
conditioner/heat pump or a direct supply of heat via electric, gas, water or air heating). Energy consumption
here is unique function of the sum of heat fluxes to all rooms. Therefore minimization of the energy
consumption is equivalent to minimization of this combined heat flux.

Problem (B). Each room has separate air-conditioner/ heat pump. That is, each room has individual heat
source with separate temperature.

Unlike the problem A, minimization of energy consumption (exergy losses) in Problem B is not equivalent to
minimization of combined heat fluxes.

We will show that for any law of heat transfer the optimal heating/cooling in Problem (A) is achieved by
transferring heat to target rooms only.



We will also show that the most energy efficient way to thermo state the building in Problem B is by
supplying/removing some of the heat into intermediate rooms also.

Similar problem arises in cryogenic, where the objective is to establish a pre-set low temperature in a chamber
using heat pumps. It is known, that for some laws of heat transfer, it is more efficient in this problem to use
so-called active insulation. It includes an “onion ring” of chambers embedding each other, where some part of
heat is removed from the central thermal stated chamber and some parts from each intermediate chamber. The
temperatures in intermediate chambers are set lower than the temperature of the environment but higher than
the temperature of the thermal stated chamber. The active insulation problem was first considered in [4], [5]
and then generalized in [6]. In [6] it was shown for which laws of heat transfer active insulation leads to
energy savings.

Problem formulation

Figure 1. General structure of a building.

Consider the building whose structure is shown in Figure 1, where the following notations are used:

T; — is the temperature of the i-th room (i=0,1,...,n) [ K ;

a (Tl , T /.) -is the heat transfer coefficient between i-th and j-th room, which can depend on the temperatures
in these rooms (& ; = a; 20), (W/K]J;

q; =0, (T;, T )T, —T,) - is the heat flux from the j-th room to the i-th room, [W];

G0 =i (T, ,Ty(T, —T,) - is the heat flux from the i-th room to the environment with the temperature Ty,
[W];

qu is the heat flux, supplied (removed) to/from i-th room, [W]. We assume that the sign of this flux is

positive if the heat is supplied to the i-th room.

P is the power that runs air-conditioner/heat pump in the i-th room.
Problem formulation: Assume that the temperatures of m rooms Ty,... Ty, (7 < 1) and the temperature of

the environment T are fixed. It is required to find such heat fluxes g ; (i=1,...,n) that the total amount of

heat supplied (for the problem A) or the combined power used to drive heat pumps and refrigerators (for the
problem B) is minimal.



Thermo stating using a single heat source (optimal distribution of energy)

Let us write down the formally the problem of minimization of total heat supplied. This problem arises when
heating system is designed for a building where the set of rooms where the temperatures are required to be

fixed as well as the temperature of the environment T( changes during different seasons and/or during
different time of the day.

The optimality criterion here is

1,=>.g, - min (1)

i=1

subject to the heat balance

> q,(T.T)+q, =0, i=1,...n, 2)
J=1
constraints on the heat fluxes
q, 20, i=1...,n, (3)
and constraints imposed on the temperatures of the thermal stated rooms
T.=T"'>T,, i=0,..,m. @)
This problem can be simplified, by eliminating the condition (2) and rewriting the objective function as
1,=> > q,(T,T,)—> max (5)
=0 j=0

subject to constraints

n
> q,(T,,T)<0, i=1,...n. (6)
j=0

The unknown variables in this problem are the temperatures of the intermediate room Tj (i=m+1,...,n).

Let us write down the Lagrange function of the problem (5), (6)

L=2 (+2) q;(T.T) ™
i=0 j=0

Its optimality conditions follow from the Kuhn - Tucker theorem

oL »0q,(T,,T,)

L)y A o ol 8

o ( Z)JZ(; or i=m n (®)
v woq(T,T,

A, <0, ZiiZ%lJ:O- )
=0 j=0 T,

From the Slater's complementary slackness conditions (9) it follows that if A, = 0, then

qu. (T;,T,)<0,and if A4, <0 then Z% (T;,T,) =0.1tis clear that any increase of temperature
Jj=0 J=0

T’ of any of the rooms leads to the decrease of the heat flow, which enters it. Therefore for all intermediate

rooms Z q; (1,,T j) <0, i=m+1,...n. From the conditions (8) it follows that for these rooms
=0

(1+4,)=0, thatis, 4, = =1 (i=m+1,...n). From the Slater's complementary slackness conditions (9) it

follows that on the optimal solution

Zqij(Ti,Tj)zo, i=m+l1,...n.
=0



In another words, if the solution is optimal then all the heat flows that enter intermediate rooms must be equal
zero.

The optimal values of heat fluxes qN L= 1,...,m) are uniquely determined by the heat balance equations
(2) which take the following form

> q, (T, T)+q, =0, i=1,...,m (10)
j=0

n
> q,(T,,T,)=0, i=m+1,...n (1)

j=0

T,=T°, i=0,...,m. (12)

The conditions (10)-(12) allow us to find the fluxes qu (i =1,...,m) and (n-m) temperatures in intermediate
rooms.

For the Newton (linear) law of heat transfer, the heat transfer coefficients a; are constant and the problem

(4)-(6) becomes the linear programming problem, and the conditions (10)-(11) turn out to be the set of (n-m)
linear equations. The solution of this set of equations completely determines the optimal values of fluxes g, .

If one of the fluxes g, turns out to be negative then no optimal solution exists for the original heating

problem (A). The optimal solution with the given set of temperatures in the target rooms can be guaranteed
only if an air-conditioner/heat pump is used for heating.

Example.

Consider the building, shown in Figure 1. The corresponding computational schematic structure is shown in
Figure 2. The temperature of the environment To and the room temperatures T and T are given and equal to,
200C, 18°C and 20°C , correspondingly. Heat transfer coefficients between the rooms and the environment
are shown in Table 1. It is required to determine the amount of supplied heat 671 and 672 and the temperatures

in the non- thermo-stated rooms T3, T4, Ts, T.

i,j 0 1 2 3 4 5 6

0 16.8 84 16.8 0 33.6 50.4
1 16.8 0 0 33.6 33.6 33.6
2 84 0 33.6 33.6 0 33.6
3 16.8 0 33.6 33.6 33.6 0

4 0 33.6 33.6 33.6 0 33.6
5 33.6 33.6 0 33.6 0 0

6 50.4 33.6 33.6 0 33.6 0

Table 1. The heat transfer coefficients, a; [W/K].

The equations (10)- (12) yields the set of heat balance equations
q10(T, To) + 41, (1,T,) + q,5 (1, T5) + q,6(T,,T) + 4, =0,
G20 (T3, T0) + 45 (15, T5) + 4 (15, T,) + 456 (15, T5) + 4, =0,
930 (T, 1) + s, (15,15 ) + g3, (15, T,) + 55 (1, T5) = 0,

g (T 1)+ 9, (T, 15) + 445 (T, T5) + q46(T,, T5) = 0,
q50(T5,Ty) +q5,(T5, 1)) + 95, (T5,T3) = 0,

9o (T 6:T0) + 41 (T5, 1)) + 9o (T, T,) + 44 (T3, T,) = 0.



Substitution of the of the given temperatures T, T1 and T, yields the following results
G, =1832W; §, =4579W; T, =6.8°C; T, =12.3°C;;T, =1.6°C ; T, =4.5°C.

T3 Ty

75 Ts 7

Ts

To=-20°C

7y, =18°C
I;=20°C

Ty, Ta, Ts5, 76— ?
qul ’ Ejz =7
Figure 2. The fragment of the building plan (a). Computational schema of heat transfer in this fragment (b).

Minimization of exergy losses for heating using individual rooms’ pump/air
conditioners/ heat pumps

The problem of minimization of the combined energy used by air-conditioners/heat pumps takes the
following form

I, => P —min (13)

i=1

~

subject to conditions (2), (4). We denote the efficiencies of heat pumps as 7, = % These efficiencies
depend on the design of the pump (the heat transfer coefficients in the heater and refrigerator & and k), the
form of the cycle, the temperatures on the hot and cot side of the cycle 7jyand 7, and on the power used P,.

The reversible estimate of the heat efficiency of the heat engine does not depend on P,

T
r,= —. (14)
I, =T,

Here and later we measure temperatures in Kelvin degree.

The more accurate lower estimate for the efficiency of a heat pump and refrigerator cycle, which takes into
account the irreversibility of heat transfer was obtained in [1], [2]. For the Newton law of heat transfer with

the heat transfer coefficient ko for the heat removal from the environment and ki for the heat supply into the
room this estimate for a heat pump has the following form [2]
1 k(T, +T, k*(T,-T,)’ k(T,-T,
(T, T P) = 14— \/Pf+ Ot p JOR)_p HLZh)
2P 2 16 4

i

; (15)

4k k,

Wk, +4/ky)?

For refrigerator 7, < T, and its efficiency 7, is expressed in terms of 7, defined in (16) as

here k, = is the equivalent heat transfer coefficient.

7, =r.(T,,T,,P)—1. The equality (17) follows from the known relation between the efficiency of

refrigerating cycle and the efficiency of heat pump [2]. In particular, for a reversible cycle



o T

o= =7 -
Tl‘ - To
Let us rewrite the condition (2) in the following form
>4, (T, 1)+ Pr(T,.T,.P) =0, i=l...n (16)
=0

In the problem (13), (16), (4) the unknown variables are powers P, > 0 (i =1,...,n) and the temperatures

of the intermediate rooms 7, (i = m +1,...,n).

If Z q; < 0, then the air-conditioner for the i-th room operates as a heat pump and its 7; has the form (15).
j=0

n
If Z q; > 0, then it operates as a refrigerator, with 7; < 7} . The efficiencies #; in conditions (16) and all

j=0
equations, which follow from them, should be replaced with refrigerators’ efficiencies

=—1,(1,.T,.P) - 1. (17)

Note that the temperatures 7, and 7’ in equation (17) changed places.

The Lagrange function of the problem (13), (14), (4) has the form

L= Z{ Bl A (T T P+ 43 g, (T T
j=0

which yields the following optimality conditions

or
a—L=O—>rl.(TO,TI.,R.)+R.i=—L, i=1,...n. (18)
oP oP. A,
OL 0q,
—=0->P + = =0, v=m+l1,...,n 19
GRS a9

i#v

These conditions jointly with the conditions (16) and expressions (15),(17) determine the unknown variables.

If a reversible efficiency estimate is used then the problem is simplified and the system (16), (18), (19) leads
to the following equations

=—(1——)Zq,,( ) i=1l..,n (20)

T
/1.:—1+?°, i=1,...,n @21

i
i

n_0q.. " Aq. T
/IV qW + Z q;y _PV/IV 0 -
v=0 8]11/ i=l, awi (Tv _TO)

i#V

=0, v=m+l,...,n (22)

Thus the temperatures of the intermediate rooms are

T n aqw n T _TO aq TO n aq
o + ! L — % =0, v=m+l,...,n. 23
T,-T ZaTw Z T or 2ZaT,. @)

v j=0 i v v J=0
i#v

This system of equations allows us to find all the temperatures, because all the temperatures for i < m are
fixed (see (12)). After finding the temperatures the powers can be found from the conditions (20) for all
i=1,...,n



Example 2.

Consider the building shown in Figure 3. The temperatures are 7, = 253K and 7, = 293K and the heat

transfer coefficients are K, = K, = K, = 3000% and O, =,y = 94.08%and

w
a,, =, =180—.ltis required to find the temperature 7, in the second room and the powers of heat
K

pumps/ refrigerators.

7 7

T =-20°C=253K
71=20°C=293 K
Hh—=7

P Py =7

Figure 3. The plan and the computational structure of the building used in Example 2.

The problem of minimal energy used to drive heat pumps has the following form here
I=P +P, - min

subject to hat balance

9,01}, Ty) +q, (1), T,) + Br(T,,T,, P) =0,

92012, T5) + 4, (T, 1)) + Py (Ty, T, P,) = O,
Now power can be expressed in term of 7, as
848560349 — 44689507, + 5625T22
76737 - 50T,
1769323311113 -13139822427, + 2436457T22
4267T, —318926

P(T,)=16

P, (T,)=0.48

Thus, the optimality criterion I depends only on 7', only and attends its minimum at 7, = 282K .
Substitution of the obtained temperature 7, into the expressions for the powers yields

P =910.36/ and P, = 79.32WV .



Conclusion

In this paper we demonstrated that if the building is heated from a single-temperature heat source (single air-
conditioner/heat pump, electrical heating, heating using hot water/air, natural gas heating) then for any law of
heat transfer it is most energy efficient to supply heat only into the set of rooms where the temperatures are
fixed. The temperatures in the intermediate rooms are allowed to set up freely and are determined by the
conditions of heat transfer.

If separate air-conditions/heat pumps are used for heating/cooling then it is most efficient to use some power
to establish some optimal temperatures in the intermediate non-target set of rooms.

The obtained formulas allow us to find this temperatures and to estimated the lower bound on the total energy
consumption for thermal stating of the building.
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